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Abstract--Finite-difference solutions for unsteady flows over a stationary sphere due to a step change in 
the free-stream velocity from U~ to U 2 (0 ~< U~ < U2) are obtained, from which the unsteady drag is 
evaluated, for Reynolds numbers, Re (based on the diameter of the sphere and the free-stream velocity 
U,), ranging from 0.1 to 100 over a large range of time. The history force on the sphere is determined 
by subtracting the quasi-steady drag from the computed total drag. The numerical result shows a 
complicated behavior of the history force at finite Re for both U~ = 0 and U~ > 0. It decays as t -~/2 for 
small time; it then decays as t - "  (n I> 2 with n = 2 for small Re) for an intermediate range of time; and 
it decays exponentially at large time. The numerical results are used to assess a recently developed 
expression for the history force for finite Re. Good overall agreement is observed for the history force 
between the analytical prediction and the finite-difference solution for small and intermediate time for the 
Re values tested. 
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1. I N T R O D U C T I O N  

In order to predict unsteady motions of particles (including droplets and bubbles) in a carrier fluid, 
a precise knowledge of the unsteady forces on the particles is required. In steady state, the drag 
on a particle due to the fluid flow is mainly dependent on the Reynolds number, Re, which is based 
on the relative velocity and the particle diameter. In many situations, significant variations in the 
velocities of both the fluid and particles are encountered, such as particles suspended in a high-speed 
mixing layer where large spatial velocity gradients exist, high-pressure spray injection of liquid fuel 
in combustors, among others. The acceleration of the relative flow thus introduces an additional 
complexity, especially at finite Re, to the dynamics describing the particle motion and it needs to 
be properly taken into account. 

The earliest works related to the unsteady drag on a spherical particle were those of Stokes (1851) 
and Basset (1888). Their results were derived in the frequency and time domains, respectively, in 
the creeping flow regime for zero Re. Odar & Hamilton (1964) performed carefully controlled 
experiments to measure the unsteady drag on an oscillating sphere in a stagnant oil tank for 
Re < 62. Modifications on the history force and the added-mass force were proposed based on an 
acceleration parameter (Odar 1966). Their empirical result has been used, for example: by 
Sch6neborn (1975) to correlate his experimental results for the reduction of the particle settling 
velocity in an oscillating flow field; by Clift et al. (1978) to predict the motion of a falling sphere 
in a stagnant liquid pool with large Re based on the terminal velocity; and by Linteris et al. (1991) 
to study the droplet dynamics in a nonuniform flow field. Temkin and coworkers (Temkin & Kim 
1980; Temkin & Mehta 1982) deduced a drag coefficient as a function of Re and flow acceleration 
from accurate photographic measurements of droplet trajectories induced by weak shock waves 
in a horizontal shock tube. It was found that when the flow relative to the droplet is accelerating 
(decelerating), the drag coefficient is smaller (larger) than the steady-state value at the same velocity. 
This trend directly contradicts the prediction given by the solutions of Stokes and Basset and 
the experimental results of Odar & Hamilton (1964), Sch6neborn (1975) and Karanfillian & 
Kotas (1978) regarding the effect of flow acceleration on the unsteady drag. Recently, Tsuji et al. 

(1991) measured the unsteady drag on a sphere due to a finite fluctuation of the free-stream velocity 
at high Re (~8000-16,000). The results deafly show that the instantaneous unsteady drag 
should be larger than the corresponding steady-state value at the same velocity when the flow 
accelerates. 
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Recently, Mei and coworkers (Mei 1990, 1993; Meiet  al. 1991; Mei & Adrian 1992) showed, 
through detailed theoretical and numerical analyses, that the force on a sphere in an unsteady flow 
field consists of a quasi-steady drag, a history force, an added-mass force and a force associated 
with the free-stream acceleration for Re ~< 200. At finite Re, the quasi-steady drag can be 
represented by using the standard steady-state drag coefficient and the instantaneous velocity; the 
added-mass force is the same as in the creeping flow and potential flow regimes; the history force 
has a kernel that decays as t-1~2 for small time and as t 2 for large time. An approximation for 
the history-force kernel was derived for finite Re (Mei & Adrian 1992). In Mei (1993), the analytical 
prediction of the total unsteady drag on an oscillating sphere in a stagnant oil tank based on this 
approximation was shown to be in fair agreement with the experimental results of Odar & 
Hamilton (1964) at finite frequencies. The predicted velocity for a falling sphere in a stagnant liquid 
pool was in very close agreement with the experimentally measured values over a large range of 
Re (Moorman 1955). The particle dynamic equation proposed in Mei & Adrian (1992) agrees in 
principle with the experimental results of Odar & Hamilton (1964) and Tsuji et at. (1991) and 
approaches Basset's (1888) solution for the unsteady drag in the limit as t--,0 for small Re. For 
an oscillating sphere at finite Re (Mei 1993), the quasi-steady force is shown to be the dominant 
term in the total drag and its representation using the steady drag coefficient and instantaneous 
velocity is accurate at low frequency. At high frequency, the quasi-steady force based on the steady 
drag coefficient results in an O(1) error (an overestimation) in comparison with an asymptotic 
solution. However, this error is very small in comparison with the leading order terms (added-mass 
and history forces) in the total drag at high frequency. Mei (1993) also pointed out that the 
modifications on the history force and added-mass force by Odar & Hamilton (1964) were not 
physically sound, because they do not give correct long-time asymptotic decay of the history force 
and do not approach Stokes's (1851) solution as Re--.0. Their expressions for the history force and 
added-mass force both exhibit unphysical behavior at some particular instant in a purely oscillating 
flow, but tend to cancel each other in the expression for the total unsteady drag for the oscillating 
flow. They do not approach the limiting behavior of Basset's (1888) solution at small time. In 
summary, the carefully controlled experimental results of Odar & Hamilton (1964), Sch6neborn 
(1975) and Tsuji et al. (1991) at finite Re agree qualitatively with the classical theories of Stokes 
(1851) and Basset (1888) for zero Re and the recently developed theory of Mei & Adrian (1992) 
for finite Re, while the carefully obtained experimental results of Temkin & Kim (1980) and Temkin 
& Mehta (1982) showed the opposite trend. Because of the particular setup using a shock tube in 
the experimental investigations by Temkin & Kim (1980) and Temkin & Mehta (1982), it appears 
that the particle dynamics involving a sudden change in the free-stream velocity must be understood 
first at finite Re. 

For the impulsively started motion, Ul = 0, an analytical solution for the unsteady drag has been 
obtained by Sano (1981) for Re<<l using the method of matched asymptotic expansions. The 
unsteady drag was found to approach to the steady value as t-2 at long time. However, the result 
is for very low Re, strictly speaking. In this study, the unsteady flow has a zero acceleration at t > 0. 
The difference between the steady drag and unsteady drag will be taken as the history force. As 
just mentioned, there is some error in representing the quasi-steady drag by the steady drag at high 
frequency or small time. However, the variation in the flow field at long time is very small, so the 
quasi-steady force is accurately represented by the steady drag. Thus, the long-time history force 
can be accurately computed, while the short-time history force has an O(1) error; which is rather 
small in comparison with O(t-~/2). It is not clear if the history force to be computed for this 
particular unsteady flow should decay as t-2 or not at long time for finite Re. 

In Mei & Adrian (1992), an unsteady flow over a stationary sphere due to a small oscillation 
in the free-stream velocity, ~U e -i'c (c~ < 1), was investigated. An expression for the history force 
that leads to a t-2 decay at large time was given (see [7a, b]). However, the results were derived 
from an interpolation in the frequency domain based on the asymptotic limits of the history force 
at low and high frequencies: 

-fM(Re')St 
m = 2, [1] 

D, , (St)  ~ f [-2f2(Re,)St-]m/2)~:m, 

'+k J J' 
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in which St = o~a/U is the Strouhal number, Re' ffi Re/2,fH is given by [7b] and Dim is the imaginary 
component of the history force coefficient in the frequency domain [see Mei & Adrian (1992) for 
details]. In the low-frequeucy end, it was only established that the history force is proportional to 
the frequency, Dim (St) ~ f .  (Re')St as St--,0, through numerical computation (Meiet al. 1991) and 
asymptotic analysis (Mei & Adrian 1992). If a different form of interpolation for the history force 
was used, e.g. by choosing m # 2 in [1], but with the same low- and high-frequency asymptotic 
limits, one would get, through numerical integration, a history force with a long-time decay in the 
form of t-n in which n may not necessarily be equal to 2 at finite Re. The determination of the 
long-time behavior of the history force thus requires a precise knowledge of the history force in 
the frequency domain, which is very difficult to obtain accurately. 

Because of the particular nature of the acceleration of the flows with a step change in the 
free-stream velocity from UI to U2 (0 ~< UI < U2), the history force can be determined in the time 
domain through careful computations using a finite-difference method. The result allows for an 
examination of the exact (except for the truncation error and machine error) long-time behavior 
of the history force and for an assessment of the particle dynamic equation proposed by Mei & 
Adrian (1992) in the case of zero acceleration following an impulsive acceleration in the free-stream 
velocity. In this paper, finite-difference solutions for the unsteady flow field are obtained for Re, 
based on the diameter of the sphere, ranging from 0.1 to 100. Two cases are considered: (i) U~ = 0; 
and (ii) U, > 0. For the impulsively started flow, U~ = 0, the initial field is vorticity free, while for 
U~ > 0 there already exists a steady vorticity field at finite Re. The long-time behavior of the history 
force may be influenced by the structure of the steady vortieity and the comparison between these 
two cases shall show if such effects are important or not. It is found that the existing steady vorticity 
has no significant effect on the qualitative behavior of the long-time history force. The history force 
decays as t-~/~ for small time, say t < 1; it decays as t-n (n I> 2) in the intermediate range of time, 
say t ,,~ 10; and it finally decays exponentially at very large time, say t > 100, in which t is made 
dimensionless by U2 and the radius of the sphere. Good overall agreement between the analytical 
prediction using the expression of Mei & Adrian (1992) and the present numerical result is achieved 
for small and intermediate time. 

2. ANALYSIS 

2.1. Particle Dynamic Equation at Finite Re 
For a stationary sphere experiencing a small fluctuation u; (t') in the free-stream velocity U' with 

lui(t')l<< U', Mei & Adrian (1992) obtained the following expression for the total unsteady drag 
at finite Re: 

F'(t') = F~s(t') + F~(t') + F~M(t' ) + Fh(t'), [2] 

where F~s is the quasi-steady drag as if the acceleration of the flow is vanishingly small, F~ is the 
history force (or the memory force), F~,M is the added-mass force and F~s is due to the unsteadiness 
and the spatial nonuniformity of the free-stream velocity. If the sphere oscillates while the free 
stream is steady and uniform, F~s (t') = 0. In this paper, the prime denotes dimensional quantities 
unless otherwise mentioned. These forces are given, respectively, as 

F~s(t')  -- 61t/zaU'(t')O(Re), 

F~(t') = 6n~  f ~® K(t' - O ~ d~, 

[3] 

[4] 

F'~t(t') = ]prna 3 dU" 
dt" [5] 

and 

DU' 
F h ( t ' )  ffi ~pf~a3 D-F ' [6] 
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with the history-force kernel being 

and 

[7a] 

2aU" 
fH(Re) = 0.75 + 0.105Re, Re = - - ,  [7b] 

P 

where # and v are the dynamic and kinematic viscosities of the fluid, Pr is the fluid density and 
a is the radius of the sphere. The factor 4' (Re) accounts for the deviation from the Stokesian drag 
for Re(t') > 0. Many forms of ~b(Re) at different ranges of Re can be found in Clift et al. (1978) 
and the following forms are considered accurate for practical purposes: 

gb = 1 + 3 R e ,  Re ~< 0.01, 

= 1 + 0.1315Re °82- °-°Sw, 0.01 < Re ~< 20, 

= 1 + 0.1935Re °'63°5, 20 < Re ~< 260, [8] 

with w = log10 Re. In [8], Re takes the instantaneous value. 
The expression for the history-force kernel given by [7a] for an unsteady flow over a stationary 

sphere was based on: (i) the numerical result of the small-amplitude free-stream oscillation at 
finite Re for a wide range of frequencies; (ii) the asymptotic result of the small-amplitude 
oscillation case at small Re and low frequency, which gives the long-time behavior of the 
kernel K ( t ' - ~ ) ;  (iii) the Stokes solution for high-frequency oscillation; and (iv) the principle of 
causality, i.e. the motion of the particle can be influenced only by its previous history, not by 
its future behavior. The important feature of this modified history-force kernel is that it decays 
as ( t ' - T )  -2 at large time as opposed to ( t ' - z )  -1/2 as derived by Basset (1888). This implies a 
much more rapid decay of the initial condition or disturbance on the particle motion in an unsteady 
flow. 

Although the theory was developed for both small and finite Re, the accelerations of these 
unsteady flows investigated by Mei and coworkers (Mei et al. 1991; Mei & Adrian 1992; Mei 1993) 
were nevertheless quite well-behaved in comparison with that involving a shock wave as 
investigated by Temkin & Kim (1980) and Temkin & Mehta (1982). In addition, the added-mass 
force was deduced based on the asymptotic behavior of the high-frequency oscillation; the history 
force was determined by subtracting the added-mass force from the total imaginary component of 
the unsteady force in the frequency domain (see Mei 1990; Mei et al. 1991; Mei 1993). The 
correctness of the low-frequency behavior of the history force was thus based on the assumption 
that the added-mass at low frequency is the same as that at high frequency. Although this 
assumption was confirmed by Rivero et al. (1991) for an oscillating flow and a constantly 
accelerating flow over a sphere, by carrying out an ingenious numerical procedure to separate the 
contributions to the total unsteady force from the history force and the instantaneous added-mass 
force, it is not tested for other types of flows yet. 

It is commonly viewed that the added-mass force is a force related to the instantaneous 
acceleration. For an unsteady flow over a stationary sphere due to a sudden change, from U~ to 
U2 (0 ~< U~ < Us), in the free-stream velocity, the acceleration is zero at t '  > 0, which results in a 
zero added-mass force for t '  > 0. Since the quasi-steady force can be determined from the steady 
drag corresponding to U2, this special unsteady flow thus allows for a complete separation of the 
history force from the added-mass force and the quasi-steady force. It also represents a severe test 
case for the history force expression given by [7a, b] because the acceleration function is strongly 
singular, while in previous studies it was rather well-behaved. 

For a step change in the free-stream velocity, the evaluation of the history force is not trivial. 
Let A U = U2 - U~ be the velocity change, say due to a weak shock wave produced in a shock tube 
(Temkin & Kim 1980; Temkin & Mehta 1982), the acceleration is dU' /d t"  = AU6( t ' ) ,  with 6( t ' )  
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being the Dirac delta function defined as 6(t ') = 0 for t '  # 0 and S °+ 6(t ')  dr '  = 1. From [5] and [6] 
the forces related to the instantaneous acceleration are 

F~M (t') = ~Prna 3 A U~ (t') [9] 

and 

F~s(t') = ~pfna 3 AUb(t'). [10] 

For t '  > O, the previous discussion leads to the following expressions for the quasi-steady force and 
the history force: 

and 

F~s (t') = 6n/~a U2 ~b (Re) [11] 

with 

and 
~'2~k' = ( ' r '  sin 0, [15] 

d 2 s i n 0 d  ( 1 d) 
• [161 

t ' r  
F~(t') = 6nga J0- K(t" - z) AUb(z) dz 

= 67tp.a AUK((). [12] 

The total drag on the sphere for t ' >  0 in the above theoretical framework is thus 

F~r(t') = ~b(Re) + AU 6n#a-------~2 ~ K ( t'). [13a] 

Since the total drag F~(t') for t '  > 0 can be obtained accurately by numerically solving the flow 
field around the sphere and integrating the stresses on the surface of  the sphere, the history-force 
kernel K(t') is determined from [13a] as 

K(t ')  = ~-~ L6nlgaU 2 F  .F~(t') q~ (Re)l  . [13b] 

The steady value q~(Re) in [13b] is obtained from 

F~(oo) 
~ °  (Re) = 6nvaU2 [13c] 

The numerical procedure for obtaining F~(t') is outlined below. 

2.2. Finite-difference Solution for the Unsteady Drag with a Step Change in the 
Free-stream Velocity 

2.2. I. Governing equations, boundary and initial conditions 
Using the stream function-vorticity, (~,', ~'), formulation, the unsteady Navier-Stokes equation 

for axisymmetric flow in spherical coordinates (r', O) is 

~_~7(~,r, sinO)+sinO[f__~(~$" £' ) d (O ~" ~" )]  ~ r '  r ' s i n 0  -d-~Tr'\d0 r'sinO =v~'2(~'r'sinO) [14] 
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In the above, 0 is measured from the front stagnation point. The boundary conditions for ~k' and 
~ ' a t  t '  > O are 

a,, 
O ' =  = 0  on r '  Or' = a, [17] 

~ b ' = ( ' = O  on 0 = 0  and n [18] 

and 

~O'~½U2r'2sin20 as r'--*oo. [19] 

Two slightly different flows with different initial conditions are considered. For the first case, 
UI = 0; and the initial conditions can be given explicitly as 

~b'(t', r ' , 0) = ~'(t', r ' , 0) = 0 at t '  = 0. [20] 

For the second case, U~ > 0; the initial condition must be obtained by solving the steady flow field 
corresponding to U--- U~. Upon introducing the following dimensionless quantities, 

t = t 'U2/a,  U = u ' /U2,  0 = O'/(U2a2),  ~ = ~ 'a /U2,  ~ 2  = a2~,2, [21] r = r ' /a,  

and defining 

and 

[14] and [15] become 

and 

y = r sin0 [22] 

g = ~y, [23] 

os - \ s o  yV_I 

the boundary conditions are 

and 

In [24], 

2 2 
= ~.@ g [ 2 4 ]  

0¢, 
~' ~ -ffr-r = 0 o n  r = 1, [ 2 6 ]  

~ b = g = O  on 0 = 0  and n [27] 

qJ--.½r 2sin 20 as r ~ .  [28] 

Re = U22a/v [29] 

is the Reynolds number based on the free-stream velocity at t > 0 and the diameter of the sphere. 
For the impulsively started flow over a stationary sphere, U~ = 0, an accurate solution for the 

stream function can be obtained at t << 1 by solving the unsteady Stokes equation, as given in 
Bentwich & Miloh (1978): 

~ ( t , r , O ) = s i n 2 0 { l r 2 - 1 [ l + 3 ( ~ ) ' / 2 + 3 t ]  

F/4  \~/2 ] 
_3 i/2 _ + 2  t l ~ T t )  e x p ( - q s ) _  2r/erfc(r/) 

+ 2 r  (1 + 2rl2)erfc(n) - ~ ~ e x p ( - n  ~) , [30] 

~ 2 ¢  = g; [251 
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where ~l = ( r -  1)/(4t) 1/2. From [30], the discrete values of g(t, r,O) can be evaluated in a 
finite-difference form. Such solutions for ~(t, r, 0) and g(t, r, O) are used as the actual initial 
condition at, say, t = 0.001 (for accurate short-time solution) or 0.1 (for accurate long-time 
solution). Because the computation is carried out for t > 0, the forces associated with the 
instantaneous acceleration, FAM(t) and FFs(t), do not show up in the total unsteady drag. Thus, 
[30] is used rather than [20]. 

For the second case, the steady flow field at Re~ = Ut 2a/v is first obtained. An increase in the 
dimensional free-stream velocity, which results in Re = U22a/v based on the new free-stream 
velocity, is then specified at t = 0. After re-scaling the dependent and independent variables using 
the new free-stream velocity U2, the initial value for the stream function, ~ (t = 0, r, 0; Re), remains 
the same as that given by the steady solution at Re = Ret, O(t--,oo, r, 0; Re~). The initial value 
for the vorticity-related function, g(t = 0, r, 0; Re), becomes ( U I / U 2 ) g ( t ~ ,  r, 0; Re~) after 
rescaling by [72. 

2.2.2. Clustering of  the grid and discretization of the equations 

The numerical computation is performed in a physical domain of 1 ~< r ~< rE and 0 ~< 0 ~< n using 
No = 65 or 129 grid points in the 0-direction and N, = 65, 129 or 257 grid points in the r-direction. 
The following transformation is applied to place more grid points near the surface: 

r = 1 + ( rE-  1){1 --C tan-'[(1 --x2)tan(1/c)]}. [31] 

Here, x2 is the normal coordinate in the computational domain with 0 ~< x: ~< 1. 
The determination of rE turns out to be a very subtle and important issue. One of our goals in 

this paper is to understand the long-time behavior of the history force. However, the history force 
is basically an accumulated effect (in the temporal direction) of the entire flow field. For small time, 
the rapid change in the vorticity field occurs near the sphere and the size of the physical domain 
rE is not important. Since the dimensionless convection speed is one, the disturbance travels as 
x ~ t, while the additional distance due to the viscous diffusion is x ,,, (t/Re)t/~--which may be 
neglected for finite Re and large t. Due to the lack of knowledge of the effect of boundary 
conditions on the history force, we do not wish to see the disturbance reflected back from the 
boundary at r = rE, which may affect the long-time behavior of the history force. It turns out that 
the long-time behavior of the history force is not clear until t ~ 200 to 300 for Re ~< 10. Thus, a 
very large rE is desirable. In this study, the history force at large time (beyond t = 250) for Re = 0.1, 
1, 10 and 100 is obtained with (rE, C, N,) = (1200, 0.642, 129), (600, 0.645, 129), (600, 0.642, 257) 
and (300,0.642, 129), respectively. For R e =  10, Nr=257 is used with the first grid size 
Ar = 0.01985, because we want to minimize the effect of the truncation error on the long-time 
history force. When Nr = 129 is used for Re = 10 under otherwise identical conditions, the decay 
behavior of the history force does not change. Thus, Nr = 129 is used for the other three values 
of Re. As will be discussed later, the small-time result computed separately with smaller grid and 
time-step sizes can be joined smoothly with the long-time result to give an accurate history force 
over a time span of 4-5 decades. For Re = 40, (rE, C, Nr) = (100, 0.645, 129) is used with No = 129 
and the computation is carried to t = 80 from which the long-time behavior of the history force 
can be inferred. 

The second-order spatial derivatives are expressed using central difference. The convection term 
is discretized using a second-order upwind scheme in a conservative form (Mei & Plotkin 1986). 
This eliminates the numerical oscillation in space and enhances the convergence for higher values 
of Re over the central-difference scheme. The time derivative is evaluated using a backward Euler 
scheme which is implicit and first-order accurate in time. The numerical boundary condition for 
the vorticity is evaluated from the stream function on the grid points near the wall using a 
second-order-accurate expression derived by Briley (1971). The solutions for ~, and g are obtained 
in an iterative manner using a tridiagonal solver in the normal direction with a relaxation factor 
for the wall vorticity update. 

2.2.3. Time-step size and iteration procedure 

To capture the rapid transient accurately, the time-step size in the initial computation is 
At = 0.001 except for Re = 100. It is gradually increased to 0.002, 0.005, 0.01 or larger, depending 
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on Re. At each time step, a large number of  iterations (typically between 160-200) is executed. 
Although not optimized, the computation yields consistent and accurate results for the unsteady 
drag. Numerical solutions are accepted to be grid independent when the unsteady drag using 
N r = 6 5  and 129 agree within 1% for the history force at t ,,~0.1 under otherwise identical 
conditions. It is found that the numerical result for the unsteady drag is repeatable using different 
values of  time-step size on the same grid. For Re = 100, details are given in section 3.1. 

To obtain accurate long-time behavior of the history force, separate runs are carried out with 
At = 0.1 between t = 0.1 to 50 for Re = 0.1, 1 and 10. After t = 50, computations are continued 
with At = 0.25 or 0.5 to save on computational effort. For  Re = I00, At = 0.1 is used for t = 0.1 
to 250. The results to be presented later are obtained simply by joining the short-time (typically 
for t < 0.1 to 0.5) and the long-time results. Such a combination with different values of rE, Nr, 
c and At can be quite smooth in the overlapping time intervals. 

It is noticed that ~(t,  r, 0 ) ~ / r 2  sin 2 0 as r ~ o v .  For r E = 1200, the stream function at t = 10 
ranges from 0.00485 (first grid away from the wall) to 720,000 at r = r E. Such a large variation 
in ~,, by a factor of  10% causes numerical inaccuracy in solving [25]. To minimize the computational 
error, the stream function ~b (t, r, 0) is separated into two parts: a steady potential part that accounts 
for the large variation in ~k and a viscous unsteady part to be determined: 

and 

~b(t, r, 0) = ~bp(r , 0) + ~v(t, r, 0) 

~kp(r, 0) = ½(r 2 - r- l)sin 2 0. 

[32] 

[331 

The equation for $v(t, r, 0) is 

~2~k v = g. [34] 

The boundary conditions for @v in the r-direction are: 

d~v 
~kv=0 at r = i ;  t3r - 0  at r = r E .  [35] 

The condition for ~bv at r = rE is better than setting ~bv = 0 because it allows for the incorporation 
of  the displacement effect of  the viscous flow. Double precision is used for all the computations. 

The procedure for evaluating the drag, which consists of  a pressure component and a viscous 
component, is given in Mei et al. (1991). The history-force kernel K(t')  for both U~ = 0 and U~ > 0 
can be determined from [13b]. 

3. RESULTS AND DISCUSSIONS 

3.1. Accuracy Test 

For a step change in the free-stream velocity from U~ = 0 to U2 = 1, with finite Re = 2aU2/v, 
accurate numerical solutions were obtained previously by Dennis & Walker (1972) using 
boundary-layer coordinates in the initial stage and switching to physical space at later times. The 
initial condition was based on the unsteady boundary layer solution which is accurate for small 
time. Figure l(a) compares the computed drag (normalized by the Stokes drag Ds = 6nl~U2a), 
D(t)/Ds, with that of Dennis & Walker (1972) for Re = 40 and 100. Excellent agreement can be 
observed. 

Figure l(b) compares the normalized unsteady drag for Re = l0 and small time using three 
different grids, ( rE ,  C, Nr) = (50, 0.655, 65), (90, 0.645, 65) and (90, 0.645, 129), with At = 0.001. At 
small time, the vorticity is confined to the Stokes layer and the size of  the physical domain, rE, 
is not important. It can be seen clearly that the solutions are independent of the grid size for 
t > 0.02. For  Re = 40 and 100, grid-independent solutions were obtained (not shown here) between 
Nr = 65 and 129 at t --~ 0.06. From figure 2(b) it can be seen that a coarser grid leads to stronger 
oscillation at the beginning of the computation than a finer grid. This oscillation was due to the 
fact that the finite grid size cannot resolve the initially very thin Stokes layer. It dies out fast and 
does not affect the solution at later time when the unsteady boundary layer grows and the grid 
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resolution becomes sufficient. For this reason, the flow fields for all Re at small times are obtained 
using N, = 129. For Re = 40, (rE, C, Nr) = (50, 0.645, 129) are used for t < 0.1 with At = 0.001. 
Another solution is obtained using (rE, C, Nr) = (50, 0.645, 65) for 0.001 ~< t < 10 to minimize the 
amount of  computational effort. The long-time history force is obtained using 
(rE, C, Nr) = (100, 0.645, 129) and No = 129 for t < 80. It is found that in the overlapping regions, 
these solutions agree very well with each other and can be joined very smoothly. For Re = 100, 
(rE, c, Nr) = (25, 0.64, 129) are used for the initial calculation, t ~< 0.1, with At = 0.00025 to resolve 
the very thin unsteady boundary layer. A second run with (rE, C, Nr) = (50, 0.645, 129) was carried 
out for 0.001 < t < 10 with At = 0.001. For this grid, the physical domain is large enough for 
t < 10. A third solution was obtained using (rE, c, N,) = (50, 0.645, 65). For t > 0.06, the results of 
(rE, C, iV,) = (50, 0.645, 129) and (rE, C, N~) = (50, 0.645, 65) agree very well, which indicates that: (i) 
the solution for Re = 100 is grid independent at small and intermediate times; and (ii) the solutions 
for the history force obtained on different grids with different time-step size and physical-domain 
size can be joined smoothly. As mentioned earlier, the history force for t ~ 100 or larger is obtained 
(by starting from t = 0.1) on a much larger physical domain. 

3.2. Decay of the History Force 

3.2.1. Impulsively started motion from U~ = 0 to U2 = 1 

For an impulsively started motion in the free-stream velocity from U = Uj = 0 to U = U2 = 1 
with Re << 1, an analytical result based on matched asymptotic expansion for the unsteady drag was 
given by Sano (1981) as 

_ _  1 [ (  4 ) erf(½x/~) D(t)  = 1 + - - + 3 R e '  1 +-~-~ 

x / R e  

+ ~ n T ( 1  - ~ )  e - 2 \  r4/ 8 ~ n T ]  + ~6( t )+  O(Re,2 log R e , ) , 3  [36] 

where Re' = Re/2, T = Re' t and the delta function 6(0  results from the added-mass force and the 
force due to the free-stream acceleration at t---0. It is noted that the steady-state drag Do is 

D~ = l im D(t)  D---~ , ~  6rt#U2-------~ = 1 + 3Re' + O(Re 2 log Re). [37] 

Thus, the history-force kernel can be deduced from the above as 

. I t  + -~ )e  ' - ~ f ~ - - T J - ~ R e .  [38] Ks"no(t)= / R e , + 3 R e ' [ ( 1  4 2 ) e r f ( ½ v / T ) + ~ n T ( 1 - 2 \ - r 4  8 1 1 3 ' 

In the limit of  large t, Ks~no(t) ~ 3/(Re &). 
Figure 2(a)compares five different predictions for the history force in log-log coordinates for 

Re = 0.1. They are: Basset's solution (1888); Sano's (1981) solution; the finite-difference solution 
outlined above, which is considered to be the exact solution; Mei & Adrian's (1992) expression 
given by [7a, b]; and Odar & Hamilton's (1964) expression. Based on Odar & Hamilton (1964), 
the history force in the present case with an infinite acceleration at t = 0 is the original Basset force 
multiplied by a factor of  0.48. At small time, say t < 1, the decay of  K(t)  is clearly t -~/2. It can 
be seen that all predictions agree well for t < 1, except for that given by Odar & Hamilton (1964). 
It was pointed out in Mei (1993) that Odar & Hamilton's (1964) empirical expression does not 
approach the limiting value of  the history force for t << 1 given by Basset (1888), Therefore, the 
predictions using Odar & Hamilton's expression for other Re will not be presented. The Basset 
solution for t > 1 decays too slowly and it is not recommended, in general, for the evaluation of  
the history force at large time. Of  course, as Re- ,0 ,  the validity of  the Basset solution, K(t)  ,-. t -  ~/2, 
will be extended to larger time. However, if one fixes the Re first, no matter how small, there will 
be a time beyond which the Basset solution is not valid. Nevertheless, in practical cases, the Basset 
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solution can be used for very small Re for small and intermediate time which could be even larger 
than the physical time scale of interest. 

At intermediate time, t <200, Sano's (1981) analytical result agrees well with that of the 
finite-difference solution obtained using (rE, c, N,) = (1200, 0.642, 129). However, for t > 200, the 
finite-difference solution clearly shows a decay faster than t -2. In fact, the decay is even not 
algebraic anymore. As shown in figure 2(b), the history force actually decays exponentially for 
t > 260, as 

K(t) ~ 0.001783 e -°'~25t, for t > 260, [39] 

as opposed to Ks~no(t) ~ 3/(Re t 2) for large t. Note that the physical domain is r ~< rE = 1200, which 
is still much larger than the distance traveled by the disturbance originating from the sphere at 
t ~ 260. The storecl flow fields at t = 200 and 600 do indicate that in the wake region the vorticity 
has a "rapid" drop-off (seen on the log scale) near x ,,- 200 and 600, respectively. In the remaining 
grids between x ~ 600 and x = 1200, the vorticity is zero for t = 600. Thus, the numerical boundary 
condition at r = rE given by [35] should not have any effect on the history force for t < 600. The 
simple exponential decay, [39], continues to hold up to t = 800 when the computation is ended. 

The expression given by Mei & Adrian (1992) underestimates the history force for t < 800 for 
Re = 0.1. By comparing with the present numerical solution, the analytical approximation for K(t) 
given by [7a] does not have an exponential decay at large time. Thus, it cannot be qualitatively 
accurate for very large time. It can be seen that Sano's (1981) expression, Mei & Adrian's (1992) 
expression and the numerical result all exhibit a t-2 decay in the intermediate time which is an 
important feature. From a practical point of view, since the largest difference in K(t) between [7a,b] 
and [38] for Re = 0.1 is 0,015 at t = 3 and the difference exceeds 0.01 only for 0.5 < t < 16, [7a] 
does give a quite reliable estimate for K(t) at Re = 0.1 for flows with such strongly singular 
acceleration. 

Figure 3(a) shows a similar comparison at Re = 1 in log-log coordinates. Very similar behavior 
is observed. A t-n decay (n ~ 2 or slightly larger) can be observed for 20 < t < 160 from the 
finite-difference solution. The numerical result also exhibits an exponential decay of the history 
force after t ~ 160, as shown in figure 3(b)~oAgain, the size of the physical domain and the grid 
size should not affect the qualitative behavior of the history force for t < 400 because r~ = 600. The 
largest absolute difference between the prediction using [7a, b] and the finite-difference solution is 
0,12 at t = 0.4, with a relative error of 7%. 

Figure 4(a) compares the history force for Re = 10 predicted using Sano's expression [34], that 
using the expression of Mei & Adrian [7a, b] and the finite-difference solution with 
(rE, c, N,) = (600, 0.642, 257). The initial decay of the history force is again t -  i/2. A t -n decay (n ,-~ 2 
or a little larger) is seen for 40 < t < 160. As shown clearly in figure 4(b), the history force starts 
to decay exponentially at t ~ 160. It is noted that Sano's solution is supposedly valid for small Re 
and is not expected to give close agreement with the finite-difference result for Re > 1. Comparing 
it with the numerical result, it seems that Sano's result is still quite good for Re = 10 for small and 
intermediate time. Since Mei & Adrian's expression takes the effect of finite Re into consideration, 
it is expected to be approximately valid for finite Re. Figure 4 confirms this observation for small 
and intermediate time. Figure 5 shows the computed and predicted history force for small and 
intermediate time for Re = 40 using No = 129 and (rE, C, N,) = (100, 0.645, 129) for the intermediate 
time computation. It is clear from figure 5(a) that K(t) decays faster than t -2 after t ~ 15 and the 
decay is not algebraic. The exponential decay can be seen in figure 5(b) for t > 40. The agreement 
between the analytical prediction and the numerical results can be considered quite good from a 
practical point of view. 

At Re = 100, a "large" Reynolds number case, the history force behavior is more complex. 
Figure 6(a) indicates that for t < 0.03, K(t) decays as t -~/2, a classical result of Basset (1888). It 
can be noticed that K(t) decays at a slower rate near t ~ 1.3 because the pressure force actually 
increases slightly between t = 1.3 to 2.8, while the frictional force is continuously decreasing. This 
behavior was independent of the grid arrangement and time-step size. It is related to the expansion 
of the separation bubble in the rear of  the sphere. A rough curve fit of K(t) ~ t-°82 may be used 
to describe the decay of  K(t) approximately for 0.06 < t < 6. For 6 < t < 20, the history force 
decays as K ( t ) ~  0.754 exp(-0.17t) .  As seen from figure 6(b), a much slower exponential decay 
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is established as K ( t )  ,,, 0.0184 exp(-0.00985t) for t > 80. A transition region between these two 
exponential decays exists for 20 < t < 80. From a practical point of view, the prediction using Mei 
& Adrian's (1992) expression would still give a reliable estimate at Re = 100 over a large range of 
time, although exponential decay does not exist in the analytical prediction. 

3.2.2. A step change f rom Ul(O < UI < 1) to U2= I 

For a step change from U = U~ to U = U 2 at finite Re, no known analyses exist to evaluate the 
unsteady force for all times. The approximate expression of Mei & Adrian, [7a, b], would be good 
only if 

Iu2- f,I 
= << 1. [40] 

U2 
Attention is paid to this case with UI > 0, because the effect of an existing steady velocity field at 
Re~ = Ut 2a/v on the history force is not clear. 

Figure 7(a) compares the history forces predicted using Basset's (1888) solution, Mei & Adrian's 
expression and that computed using the finite-difference method for (~t, Re)=(0.2,  1). The 
prediction using Odar & Hamilton's expression is not shown because it is even not correct at very 
small t. The numerical results presented here are based on the solutions obtained with 
(rE, C, iV,) = (600, 0.645, 129). As discussed previously, the numerical solution for the unsteady drag 
in the initial transient is inaccurate, since the finite grid size cannot resolve the thin boundary layer 
near t ,~ 0 caused by the sudden change in the vorticity. After a short period of the initial transient, 
the analytical prediction agrees well with the numerical solution for both small and intermediate 
time. A decay that is faster than t-2 is observed for 7 < t < 200 in figure 7(a). The agreement 
between the analytical prediction and the numerical results is better for ~ = 0.2 than that for ~ = 1 
for t <200. Figure 7(b) shows that from t > 160, the history force decays exponentially. 
Furthermore, the decay rate is nearly the same as in the case of ~ = 1, since the two curves are 
parallel to each other in the semi-log coordinates. 

Figure 8(a) shows the history force for Re = 10 with :t = 0.2 in log-log coordinates. The steady 
flow field is obtained first for Re = 8 with (rE, C, Nr) = (600, 0.642, 257). A step change is imposed 
in the free-stream velocity, resulting in Re = 10 based on the new free-stream velocity. The history 
force with ~ = 0.2 is qualitatively similar to that at Re = 10 with ct = 1 for t < 600. The exponential 
decay at long time can be seen in figure 8(b). It may be noticed that a decay that is slightly faster 
than a simple exponential decay exists for t > 500. However, since the magnitude of the history 
force at t ,-, 500 is so small, the faster decay is of little practical concern at such large time. It is 
also seen that the analytical prediction using [7a, b] is satisfactory in comparison with the numerical 
result. 

3.3. Discussion 

From the above comparisons for both U, = 0 and U, > 0, it can be concluded that the 
history-force kernel at finite Re has the following gross features: (i) K ( t )  ~ t -  ~/2 for small time; (ii) 
K ( t )  ,,~ t-n (n >>. 2) for intermediate time; and (iii) K ( t )  ~ e -~' at very large time. For small time, 
an O(1) error is expected for K ( t )  because of the O(1) error in representing the quasi-steady force 
by [3]. However, this error is small and not noticeable because K ( t ) ~  t -~/2. It is seen that the 
long-time exponential decay is observed in both the impulsively started motion and flows with a 
step change in the free-stream velocity over an established steady flow. The existing steady flow 
field does not affect the qualitative feature of the history force. This has the following implication. 
For a particle in a turbulent fluid, any disturbance, say due to a strong turbulent eddy or due to 
a shock wave, introduced at any instant of the motion will eventually decay exponentially. 

It is interesting to note that Sano's (1981) asymptotic solution does not predict an exponential 
decay for the history force, while the present solution clearly shows the existence of such an 
exponential decay at large time. Careful examination of figure 2(a) indicates that the difference 
between his asymptotic solution and the present "exact" numerical solution is < 10 -4 at Re --- 0.1. 
It is possible that the difference results from the high-order nonlinear interaction that is picked up 
in the present numerical solution but is neglected in the asymptotic analysis which uses linearized 
Navier-Stokes equations in the Stokes and the Oseen regions. 
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From the above comparisons, [7a, b] give a reliable estimate for the history force even for 
unsteady flows with a strongly singular acceleration. Combined with the studies reported in Mei 
et aL (1991) and Mei (1993), it seems that the expression for the history-force kernel given by Mei 
& Adrian (1992) can be used to evaluate the history force for small and intermediate time for 
different kinds of unsteady flows. Equations [7a, b] should be useful for practical applications. 
Basset's (1888) expression is not recommended to evaluate the history force for order one or larger 
values of Re at large time. The expressions of Odar & Hamilton (1964) grossly misrepresent the 
history force and the added-mass force in the case of a sudden change in the velocity. 

With [7a, b] tested satisfactorily for flows with sudden changes in the free-stream velocity, an 
attempt was made, using [3]-[8] in a two-dimensional form, to predict the droplet trajectory as in 
the experimental investigation of Temkin & Kim (1980). In the experiments of Temkin & Kim 
(1980), the motions of the droplets are two-dimensional because the droplets were injected into a 
horizontal shock tube with signifcant vertical velocity. It was found that the history force in the 
form of [7a, b] contributes very little to the total force in [3] and causes no noticeable change in 
the droplet velocity. If the Basset (1888) solution with t -1/2 decay is used in place of [7a, b], there 
is a noticeable change in the droplet velocity because the decay is too slow. However, it is clearly 
demonstrated in this investigation that the Basset solution is not correct and should not be used 
in this case. A complete neglect of FM, FAM and FFS yields almost identical results because the density 
ratio of the droplet to the air is very large and the history force decays very fast according to [7a, b]. 
Thus, we cannot expect to use the experimental data ofTemkin & Kim (1980) and Temkin & Mehta 
(1982) to verify the proposed expression for the history force. It can also be said, based on the 
present study, that the history force and the added-mass force should not be important factors in 
the droplet motion investigated by Temkin & Kim (1980). Similar conclusions regarding the effect 
of the added-mass force and the history force were reached by Linteris et al. (1991) in their 
investigation of the motions of droplets entering a horizontal air jet from above with a vertical 
velocity equal to the terminal velocity of the droplet. Using [3]-[8], good agreements for the droplet 
trajectory and velocity were achieved between the measurement (Temkin & Kim 1980) and the 
present prediction only for cases with large fluid horizontal velocity (in comparison with the vertical 
injection velocity), thus having relatively smaller wake effects but larger Re and We (Weber 
number). However, these data were considered by Temkin & Kim (1980) as having too much 
uncertainty due to the droplet deformation and shape oscillation [maximum We close to or 
exceeding 0.15, a marginal value defined by Temkin & Kim (1980)]. Thus, the agreement may be 
just fortuitous and the result is not reported here. The fact that Temkin & Kim (1980) deduced 
a larger drag coefficient from most of the droplet trajectories with decelerating relative velocity 
(between the droplet and the fluid) cannot be explained by the present particle dynamic equations 
[3]-[8], because the dynamics is developed for single particles; while in Temkin & Kim (1980) the 
wake of the droplet string may have complicated effects at finite Re. 

4. CONCLUSIONS 

Accurate finite-difference solutions are obtained for unsteady flows over a stationary sphere due 
to sudden changes in the free-stream velocity for Re ranging from 0.1 to 100 over a large range 
of time. An exponential decay of the history force is observed for large time for small and large 
Re. The expression for unsteady drag proposed by Mei & Adrian (1992) is assessed. The expression 
gives accurate predictions for the history force at small time for all Re investigated. For 
intermediate time, the analytical prediction can be considered satisfactory. 
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